书河书屋 通过搜索各大小说站为您自动抓取各类小说的最快更新供您阅读!

由此,我们可推导出如下结论:

1. 若构造二阶常微分方程(1)的任意一个单参数积分曲线族,再建立一个同样以这些积分曲线为解的一阶常微分方程:

(略)

则函数(原文未明确函数符号,此处按上下文保留“函数”表述)必然是一阶偏微分方程(1*)的一个解;

2. 反之,若(略)表示一阶偏微分方程(1*)的任意一个解,则一阶常微分方程(2)的所有非奇异积分,同时也是二阶常微分方程(1)的积分。

简而言之,若(略)是二阶微分方程(1)的一个一阶积分,则(略)是偏微分方程(1*)的一个解;反之亦然[第39页]。因此,二阶常微分方程的积分曲线,同时也是一阶偏微分方程(1*)的特征线。

在当前情形下,我们可通过简单计算得到相同结论:计算后,我们所讨论的微分方程(1)与(1*)可表示为如下形式(略),其中下标表示对(略)的偏导数。由此,上述关系的正确性便显而易见。

前文推导且刚刚证明的“二阶常微分方程(1)与一阶偏微分方程(1*)之间的密切联系”,在我看来,对变分法具有根本性意义。因为,由“积分(略)与积分路径无关”这一事实可推出:

(略)

若将等式左侧积分视为沿任意路径(略)的积分,右侧积分视为沿微分方程(略)的积分曲线(略)的积分。

借助方程(3),我们可得到魏尔斯特拉斯公式:

(略)

其中(略)表示魏尔斯特拉斯表达式,该表达式依赖于(略)。

因此,由于求解过程仅需找到一个“在我们所研究的积分曲线(略)的某邻域内单值且连续”的积分(略),上述推导无需引入二阶变分,仅通过对微分方程(1)应用极线法[第40页],就能直接得到雅可比条件的表达式,并回答“雅可比条件与魏尔斯特拉斯条件(略)相结合,在多大程度上是取得最小值的必要且充分条件”这一问题。

上述推导无需额外计算,即可推广到“存在两个或更多待求函数”的情形,也可推广到“积分是二重积分或多重积分”的情形。例如,考虑在给定区域(略)上的二重积分:

(略)

在通常意义下,其一阶变分(略)等于零,可得到关于两个变量(原文未明确变量符号,此处按上下文保留“两个变量”表述)与(略)的待求函数(略)所满足的着名二阶微分方程:

(略)

另一方面,我们考虑积分(原文未明确积分符号,此处按上下文保留“积分”表述,标注为积分J):

(略)

并探究:应如何将(略)与(略)确定为关于(略)、(略)与(略)的函数,才能使积分J的值与“通过给定闭扭曲线的曲面选择”无关——即与关于变量(略)和(略)的函数(略)的选择无关。

积分J具有如下形式[第41页]:

(略)

而在“问题新表述”所要求的意义下,一阶变分(略)等于零,可得到方程:

(略)

即关于三个变量(略)、(略)与(略)的函数(略)和(略),需满足一阶微分方程:

(略)

若在该微分方程之外,再补充由方程(略)推导得到的偏微分方程(略):

(略)

则“关于两个变量(略)与(略)的函数(略)所满足的偏微分方程(I)”,与“关于三个变量(略)、(略)与(略)的两个函数(略述)和(留白)所满足的两个一阶偏微分方程构成的方程组(标注为方程组(I*))”,它们之间的关系,与“单积分情形下微分方程(1)与(1*)之间的关系”完全类似。

由“积分J与积分曲面(原文未明确曲面符号,此处按上下文保留“积分曲面”表述)的选择无关”这一事实可推出:

(原文未写出推导式,此处按上下文保留空白)

若将等式右侧积分视为沿偏微分方程(原文未明确方程符号,此处按上下文保留“偏微分方程”表述)的积分曲面(原文未明确曲面符号,此处按上下文保留“积分曲面”表述)的积分[第42页];借助该公式,我们可立即得到公式(略):

(略)

该公式在“二重积分变分”中的作用,与前文给出的公式(4)在“单积分”中的作用相同。借助该公式,我们现在可回答“雅可比条件与魏尔斯特拉斯条件(原文未明确条件符号,此处按上下文保留“魏尔斯特拉斯条件”表述)相结合,在多大程度上是取得最小值的必要且充分条件”这一问题。

上述推导与A.克内泽尔(A. Kneser)[53]从其他视角出发对魏尔斯特拉斯理论的修正表述密切相关。魏尔斯特拉斯在推导极值的充分条件时,采用了“通过固定点的方程(1)的积分曲线”;而克内泽尔则反过来,利用任意一个“由这类积分曲线构成的单参数族”,并为每个这样的曲线族构造了“某偏微分方程的一个特征解”——该偏微分方程可视为雅可比-哈密顿方程的推广。

前文提及的这些问题仅是众多数学问题的范例,但足以表明当今数学科学的内容何其丰富、多样且广博。由此引发我们思考:数学是否会重蹈其他学科的覆辙——分裂成一个个独立分支,各分支研究者彼此难以理解,分支间的联系也愈发松散?我既不相信会出现这种情况,也不希望如此。在我看来,数学科学是一个不可分割的整体,如同一个有机体,其生命力依赖于各部分之间的紧密联系。

尽管数学知识纷繁多样,但我们仍能清晰地察觉到其中逻辑方法的相似性、数学整体思想的关联性,以及不同分支间大量的类比关系。我们还会发现,一门数学理论的发展越深入,其结构就越和谐统一,而此前相互独立的数学分支之间,也会逐渐显现出意想不到的关联。因此,随着数学的不断拓展,其有机整体性不仅不会消失,反而会愈发清晰地展现出来[第43页]。

但有人会问:随着数学知识的不断扩展,单个研究者最终是否必然无法掌握这门学科的所有分支?对此,我想指出一点:数学科学有一个根深蒂固的特点——每一次真正的进步,都会伴随着更敏锐工具的发明与更简洁方法的提出,而这些工具与方法,又能帮助我们理解过往的理论,并摒弃陈旧复杂的推导过程。因此,研究者只要掌握了这些更敏锐的工具与更简洁的方法,就能比在其他任何学科中更轻松地穿梭于数学的各个分支。

数学的有机统一性植根于其学科本质——因为数学是所有自然现象精确知识的基础。愿新世纪能为数学带来富有天赋的大师,以及众多热忱执着的追随者,让数学得以圆满完成这一崇高使命[第44页]。

书河书屋推荐阅读:陆沉周若雪全文阅读至强龙尊叶辰萧初然霸总追婚:夫人,哪里跑!海边别墅的神秘男子重生蜜恋:墨少宠妻超级甜谍战:我当恶霸能爆奖励!快穿之我的潇洒人生爽炸了!绝色妖精横行影视世界最强末日系统舰娘改造,提督去宪兵队忏悔吧为保研,我盗墓贼身份曝光了!我的手下个个都是人才知青重生想消遥,扣个军婚被锁死AKM:和队长恋爱后,我一打三0幻梦0影踪0行异界快穿:所有人都知道我是好人死神之鬼差综影视之作精在线崩剧情一卦千金:玄学主播资产过亿杂货铺通古今:我养的王爷登基了梦幻香江综影视之美色撩人快穿精灵梦叶罗丽空间:天才炼丹师,帝尊百般娇宠家族旁系分支修仙指南天道葫芦果然,人杀多了,就有经验了崩坏:守梦的无想者冷战三年,她提离婚他却红了眼惊!军医带药房和军火库穿越了三国经销商八零重生,逆袭老太脚踹伥鬼儿女修仙界第一干饭人民间短故事集灵泉空间:劝寡母分家后养大弟妹惊悚直播:黏人病娇邪神来敲门军婚:嫁最强兵王,我一胎双宝亿万宠婚:帝少的影后甜妻崽崽三岁半,全皇朝跪求她登基末世废土拾荒:我有田有牛有山庄镜头里的单身舞步陆爷,夫人她马甲捂不住了!综影视之主角又在打乱剧情综影视之小小的姥子灵魂互换之别样人生快穿:宠夫日常都市妖藏:诡医生穿越种田:逃荒路上有空间盛宠七七惊!暴露盛世美颜后被病娇强制了
书河书屋搜藏榜:锦鲤弃妇:大吉大利,今日和离电霸以爱为营,伺机而动厨娘小俏媳之带着全家致富穿越之农家老四失业后,我从位面交易开始致富绑定交换系统后,上交国家当首富阴阳秘术之鬼瞳重生后,将军嫂嫂想娶我你想抄家,问过我公主媳妇了吗?九叔:我让你修道你非练武三国经销商迷局密说他爱上了土包子女生斗罗:开局教皇祭天穿越废物世子,开局申请发配边疆力气大了后,我走路带风快穿:炮灰男配要翻身【娱乐圈】脸蛋天才是怎样炼成的末日穿六零的快乐生活戏仙记穿成反派儿子的亲女儿?开局融合巅峰雷阿伦,我单骑救主咸鱼被迫在修仙界搞内卷开局绝境,我以战歌撼九天希腊神话:诸神宠儿四合院:万岁军退伍,掌权保卫处综穿:小世界学技能她太上瘾豪门弃妇被迫走红了全是孽缘男主绝嗣?她靠系统母凭子贵!那片天空那片云反派心尖黑月光假太监:皇后请排队,我是真忙不过来啊!年少情深:阎少的撩人甜妻不好追创世穷神揽青华鬼灭:我的哥哥是上弦和初始剑士是六眼,也是火红眼天剑之剑回到最初,我说我喜欢你小小夫君殇祭茅山道士传奇2在柯南世界里柯学开挂望川忘川她夺夺夺夺夺夺夺夺夺夺我气运!纵横诸天:我能无限许愿!醉哑公子他偏要以下犯上
书河书屋最新小说:海贼王:我是副船长港综:卧底靓坤身边我成最大庄家旗袍扣里的玄机港宗:从军装警开始的护国之路守界者:从修仙归来的豪门少爷HP未蒙救赎hp斯莱特林的送子游戏漫威:卡玛泰姬唯一真神,李宇一拳:劳资无证骑士!不吃牛肉!他的温柔,蓄谋已久龙族:决定成为大姐头超市通古今!囤货养活十万大军鬼灭进修呼吸法,红A是我经验包四合院:兵王归来,开局爽翻了共情系统,宿主她又美又飒风水顾问青莲居剑仙斩神之龙族君念浅浅夫妻穿,抄家后,一路躺赢到边关逆仙纪源旋风少女之心萱快穿:神明重启计划同桌是亲妈中国民间奇闻诡事录惊鸿照影:青楼掌局人废柴丹修:万灵归源图带我逆天改大周深宫:我以月魂重历真相轮回的尽头是你银河烙摊师惊!满级大佬她被逼婚!我的种田KPI通古今穿到荒年:我带着五位相公去逃荒嚯!好家伙,居然穿越成了大海盗八零改嫁绝嗣大佬,随军后成团宠老太太裸辞做保姆家里家外杀疯了人在漫威当奶爸,开局领养布罗利崩坏:被遗忘的她琴酒也要重生!仙踪难觅四合院之我什么都会亿点点综穿:小世界学技能她太上瘾闺蜜说她爸不行,领证后却醉酒行凶重回生产日,拒养白眼狼多宝风云录杀手之王:判官棋魂之有始有终四合院之长途司机在无尽副本中我靠老婆活下来豪门家族之遇见死亡